Assimilation of GOES-R ABI Aerosol Optical Depth (AOD) in a Regional Air Quality Model to Improve Surface PM2.5 Forecasts

S. Kondragunta, NOAA/NESDIS/STAR Q. Zhao, IMSG

Objective

- In preparation for GOES-R products, build a GOES AOD assimilation system in Gridpoint Statistical Interpolation (GSI) framework.
- Transition the assimilation system to NCEP operations

FY11 Accomplishments

- Completed code development to convert GOES AOD data into BUFR format. BUFR encoder/decoder work for GOES-11, GOES-12, and GOES-13.
- Code easily adaptable for other satellites.
- Developed post-processing code to handle multiple Community Multiscale Air Quality (CMAQ) model output files.
- Completed GSI code development
 - A branch was created in NCEP GSI subversion repository where developed code is committed
 - GSI GOES AOD product read module
 - CMAQ aerosol property module. Uses CRTM to compute AOD from CMAQ model aerosol fields
 - Code to convert C-grid met variables to A-grid
 - Code to compute CMAQ first guess fields
 - Tested compiling and running GSI with CMAQ NEMSIO data file and GOES AOD BUFR dataset as inputs

Categorical Evaluation for CMAQ Data Assimilation Experiments

- ✓ Accuracy (A)
- ✓ Bias (B)
- ✓ False Alarm Rate (F)
- ✓ False Alarm Ratio (FAR)
- ✓ Critical Success Index (CSI)
- ✓ Hit rate (H) or Probability of Detection (POD)

$$A = \left(\frac{b+c}{a+b+c+d}\right) \cdot 100\%$$

$$B = \frac{a+b}{b+d}$$

$$F = \left(\frac{a}{a+c}\right) \cdot 100\%$$

$$FAR = \left(\frac{a}{a+b}\right) \cdot 100\%$$

$$CSI = \left(\frac{a}{a+b+d}\right) \cdot 100\%$$

$$H = POD = \left(\frac{b}{b+d}\right) \cdot 100\%$$

FY12 Tasks

- Complete GSI development (delayed due to STAR contract vehicle issues)
 - Generate CMAQ model AOD background error (BE) statistics
 - Generate GOES AOD observation error (OE) statistics
 - Integrate CMAQ AOD BE and GOES AOD OE covariance matrices into GSI system through cost function construction
- Conduct data assimilation experiments with GSI and analyze the results
 - GOES AOD data
 - GOES-R proxy data
- Complete a manuscript on GOES AOD assimilation work (in preparation)